
1

Low Level Architecture & Arduino
Introduction to processor and micro-controller architecture and Arduino environment.

Training for 1st IS students.

Paul Pinault
Blog/contact : www.disk91.com

Twitter : @disk_91

YouTube: https://www.youtube.com/c/PaulPinault

http://www.disk91.com/
https://www.youtube.com/c/PaulPinault

3

Computer science
history and processor
architecture

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

4

Evolution of the computing technics
From mechanical approach to fully integrated, high density circuits, 400 years of engineering.

Mechanical Electro-Mechanical

18901642

Early ages of computing,

developed by Blaise Pascal,

capable of addition and

subtraction.

Punch card-based systems able to manage

multiple accumulators.

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

Lamps

1941

Transistor

1955

Integrated Circuit

1959

Pascaline
Herman
Hollerith
Machine ENIAC

TRADIC

IBM 360

Programmable system able

to execute about 5.000

instructions per seconds for

160KWh with 17K tubes

Programmable

system running 1M

instruction / s for

100Wh with 10K

transistors

Programmab

le system

running 1M

instruction /

s

202X

Up to 2T

inscription / s

in 2020

5

LAMP NEEDS
TO BE WARM
TO WORK
Bootup time is quite

long due to warming

up time.

LAMP technology
Is acting as power switch controlled by an electrical

signal.

- 2 wires are heating the lamp

- 1 wire control the on/off switch

- 2 wires are passing the currant when on

LAMPS ARE
INSECURED / FRAGILE

As a classical lamp bulb, they are

fragile. Lights is attracting BUGS

and bugs crash the lamps ... And

the associated programs.

LAMPS ARE BIG,
EXPENSIVE, ENERGY
CONSUMMING
Due to size, integration

complexity and technology,

the LAMP systems are not

scalable, expensive and

complex to maintain.

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

6

TRANSISTOR IS
IMMEDIATELY
AVAILABLE
No warming period.

The speed of the

system will depend

on the time needed

to switch from ON <->

OFF

TRANSISTOR technology
Is acting as power switch controlled by an electrical

signal.

- 1 wire control the on/off switch

- 2 wires are passing the currant when on

TRANSISTORS ARE
ROBUST, LOW COST,
LOW POWER, SMALL
Transistor solves most of the

problems seen with Lamps. It

allows to make larger and more

complex systems. More reliable

CONNECTING
TRANSISTOR IS STILL
A COMPLEX WORK
Designing systems with

transistor is complex as you

need to connect all them

togethers. Currently a

processor has 1 to 10 Md of

them.

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

7

ICs ARE
RELIABLE

No more problem to

connect the different

transistor, the

industrial process is

doing it.

INTEGRATED CIRCUIT
technology
Is a group of transistors printed on a unique wafer

and already connected to create an advanced

circuit like a sensor or a processor.

ICs ARE GOING FASTER
WITH A BETTER
EFFICIANCY
The ability to reduce the size of

the transistor inside an IC allows

to use higher frequencies and a

better power efficiency.

ICs SCALING DEPENDS
ON ENGRAVING
FINENESS
The density of transistor depends

on the size of each of them. It

depends on the technology ability

to engrave little things. Currently

5nm is part of the best industrial

performance.

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

8

gate can be designed

with mechanical

switches or transistors

in parallel.

BOOLEAN
LOGIC IS BASE
OF COMPUTING

Any of the logical gates
can be made with
transistors.

OR

Author – Paul Pinault / Disk91.com

gate can be designed

with mechanical

switches or transistors

in series.

AND

9

ELECTRICAL CIRCUIT
Transistor circuits assembled to create basic

instructions like mathematical operation, memory

transfer…

STEPS AFTER STEPS,
PROGRAMMER HAVE

ADDED LAYERS TO
SIMPLIFY

PROGRAMMING

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

MICRO INSTRUCTION
Hardware encoded advanced instruction based on

the execution of multiple basic instructions.

MACHINE LANGUAGE
The instruction set the micro-processor can execute.

An instruction a based on micro-instruction or

electrical circuits. An instruction is an OP code ; is a

binary value.

HA
RD

W
AR

E

ASSEMBLY LANGUAGE
Instructions are the same as for the machine

language but each of the instruction is TEXT encoded

so it can be manipulated by humans.

HIGH LEVEL LANGUAGES
C, C++, GO, FORTAN … These languages simplify the

programmer work by allowing complex operation in a

single line. Compilation transforms them into

assembly / machine language for being executed.

INTERPRETED LANGUAGES
Python, Bash, Basic, PHP, JS … These languages are

executed by a program interpreting the program lines

after lines calling some HIGH–LEVEL LANGUAGES

functions.

SO
FT

W
AR

E

10

ELECTRICAL CIRCUIT
Transistor circuits assembled to create basic

instructions like mathematical operation, memory

transfer…

OPERATING SYSTEM
CREATES A HARDWARE

ABSTRACTION FOR
SOFTWARE

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

MICRO INSTRUCTION
Hardware encoded advanced instruction based on

the execution of multiple basic instructions.

MACHINE LANGUAGE
The instruction set the micro-processor can execute.

An instruction a based on micro-instruction or

electrical circuits. An instruction is an OP code ; is a

binary value.

HA
RD

W
AR

E

ASSEMBLY LANGUAGE
Instructions are the same as for the machine

language but each of the instruction is TEXT encoded

so it can be manipulated by humans.

HIGH LEVEL LANGUAGES
C, C++, GO, FORTAN … These languages simplify the

programmer work by allowing complex operation in a

single line. Compilation transforms them into

assembly / machine language for being executed.

INTERPRETED LANGUAGES
Python, Bash, Basic, PHP, JS … These languages are

executed by a program interpreting the program lines

after lines calling some HIGH-LEVEL LANGUAGES

functions.

SO
FT

W
AR

E

OPERATING SYSTEM

11

Compiler chain
transforms a source code
into an executable binary

Author – Paul Pinault / Disk91.com

MACHINE

LANGUAGE

ASSEMBLY

LANGUAGE

HIGH-LEVEL

LANGUAGES

COMPILATION ASSEMBLY

for (int i = 0 ; i < 10 ; i++) {
….

}

Mov R0,#0;
Bcl:

…
INC R0
CMP R0,#10
JNE Bcl

0x22 0x00
…

0x31
0x74 0x0A
0x86

gcc –S main.c

gcc

12

Compiler chain
transforms a source code
into an executable binary

Author – Paul Pinault / Disk91.com

When multiple files need to be
assembled after the compilation
phase, there is a link edition phase

Preprocess & Parse

Code generation and

assembly generation

1
2

Linking3

Replace #define, verify syntax … to
generate a final and valid high level
source code

Transform High-Level source code
into language machine. At this step
external references are not known.

Makes link between external
references to create a single code.
Place objects to the right location in
memory

13

COMPUTER MAIN
COMPONENTS

Author – Paul Pinault / Disk91.com

MEMORY1
There are different types of memories
in a computer:
• Persistent memory – stores data

even when there is no power supply
• Volatile memory - fast memory only

working when power is supplied.
• Cache memory – faster memory used

to replicate parts of volatile memory
to improve performance

• Registers – fastest memory blocks
used to execute the computations.

PERSISTANT

MEMORY

VOLATILE

MEMORY

CACHE

MEMORY

Unit is GB/TB
(in 2020)

Unit is GB
(in 2020)

Unit is KB / MB
(in 2020)

1MB/s - 3GB/s
25GB/s – 40GB/s

L3 – 60 GB/s

L2 – 80 GB/s

L1 – 210 GB/s

get more on https://www.forrestthewoods.com/blog/memory-bandwidth-napkin-math/

Modern CPU process 3-6G
instructions per seconds per core

Dynamic RAM
(need to be refreshed)

Static RAM
(no need to be refreshed)

A memory is like an array in C, for each
of the addresses you can read or write
a value.

14

COMPUTER MAIN
COMPONENTS

Author – Paul Pinault / Disk91.com

REGISTERS2
Registers are specific, small block of
memory inside the CPU core.

This is about 1KB of memory per
core.

This memory zone works at CPU full
speed

RISC CPU are making computation
between 2 registers and stores the
result in a register.

They are like local variable with the
difference they are all defined and
not extensible.

Why so much level of memory

Inside the CPU Core

Intel 8086

1978
Rq : This image and the

zoomed one are totally

different generations

of processor.

15

COMPUTER MAIN
COMPONENTS

Author – Paul Pinault / Disk91.com

Arithmetic and
Logic Unit3

This component is the making the computation.

They can be arithmetical (+ - * /) or logical (
And, Or, Xor, Not, Rotations …)

Two values are taken, usually, from registers.
The result is also stored in a register, sometime
one of the same used in input to reduce the
instruction size.

In CISC processor (”Complex Instruction Set
Computer”), the source and destinations can be
memory.

In RISC processor (“Reduced Instruction Set
Computer”), source and destination are usually
only registers.

The result of the computation generates flags,
they can be used in other computation of in
instructions like conditional jumps.

ALU

Register Register

Register

Control
Unit + - / *

& | ^ !
>> <<

Flags

Carry…

Carry,
Negative,
Overflow,
Zero …

First Operand Second Operand

Result

16

COMPUTER MAIN
COMPONENTS

Author – Paul Pinault / Disk91.com

CONTROL UNIT4
The control unit is the brain of
the CPU, from an instruction it
determines the right signals to
send to the other components
of the processor to perform the
expected actions.

Modern Control Units are
capable to run multiple
instruction thread in parallel
(Hyper Threading) or to
dynamically reorder the
instructions to optimize
performance.

PC

IR PSW
FLAGS
Carry,
Negative,
Overflow,
Zero …

Program Counter
Store the instruction
address

CONTROL UNIT

Instruction Register
Opcode of the
instruction

Select ALU
Operation

Change address
Jump & conditional Jump

Select source
& destination
registers

Select memory
address & bus
configuration

Lo
ad

 In
st

ru
ct

io
n SP

Stack Pointer
(Call & Return)
…

CLOCK SIGNAL
Control execution speed,
each clock signal can be
seen as an instruction
execution. 1GHz = 1ns

17

COMPUTER MAIN
COMPONENTS

Author – Paul Pinault / Disk91.com

Input / Output5
There are many peripherals used by
a computer, some of them are
internals:
- FPU (Floating Point Unit)
- MMU (Memory Management

Unit)
- GPU (Graphical Processing Unit)
- AES-NI (Encryption)
- AVX (Advanced Vector

Extension)
- …
There are also external peripherals
- Networks: Ethernet, WiFi,

Bluetooth
- Video: HDMI, VGA…
- Extension: USB

18

COMPUTER MAIN
COMPONENTS

Author – Paul Pinault / Disk91.com

BUS6
A bus is a group of wires used to
interconnect the different
components altogether. There are
ADDRESS, DATA and CONTROL signals
on it.

As it is not possible to pass everything
within a single bus, different bus
exists.

Each bus has some specificities related
to the type of transported data.

Example:
- USB
- Memory BUS
- HDMI

MEMORY BUS

SATA BUS

PCI BUS

Signals:
• Address (8-64bits)
• Data (8-64 bits)
• Controls

• Read
• Write
• Reset
• …

19

VON NEUMANN ARCHITECTURE
Computer architecture

Author – Paul Pinault / Disk91.com

REGISTERS

CONTROL UNIT

PROCESSOR

BUS

VOLATILE FAST
MEMORY

PERSISTANT
SLOW MEMORY

I/O

20

VON NEUMANN
ARCHITECTURE

Author – Paul Pinault / Disk91.com

This architecture has
been designed in 1945
and implemented in
EDVAC computer.

The Intel 8086, now
Core i3,i5,i7… are all
based on this
architecture.

Control Unit and
Processing Unit are
separated

One single memory
zone for program
and data

System extended
with I/O interfaces.

21

HARVARD ARCHITECTURE
Computer architecture

Author – Paul Pinault / Disk91.com

REGISTERS

CONTROL UNIT

PROCESSOR
BUS

VOLATILE
DATA MEMORY

PERSISTANT
DATA MEMORY

I/OPROGRAM
MEMORY

22

HARVARD
ARCHITECTURE

Author – Paul Pinault / Disk91.com

This architecture has
been designed in 1937.
It is mostly
implemented in
embedded CPU.

ARDUINO Atmel MCU is
based on a Harvard
Architecture.

Therefore, it is possible to perform
a Data Read and a Program Read in
a single cycle

Program has is specific memory.
No need to move program from
persistent to volatile memory zone.

The program
execution can’t
modify the
program itself.

23

CPU vs MCU
Computer architecture

Author – Paul Pinault / Disk91.com

A CPU, like an Intel
i7, is a computing
component, it has
no memory (other
than cache), no IO,
no storage…

An MCU, like an
Arduino, is a System
On Chip, including a
CPU, memory, flash,
IO, communication
unit, clock…

24

ARDUINO PLATFORM,
FOCUS ON ATMEGA
328P

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

25

MANY
DIFFERENT
HARDWARE
Arduino family have

small MCU like AT328P

but also strong ARM

MCU support or ESP

support for WiFi based

applications.

ARDUINO IS A WELL-
KNOWN MAKER
PLATFORM
Arduino is basically low cost, with a large

community and a wide support of many hardware

and many sensors. It has born in 2005.

OPEN-SOURCE
ENVIRONEMENT AND
ECOSYSTEM
Most of the Arduino development

are open-source allowing to find

all what you need for most of

your maker project

LOW-COST PLATFORM

An Arduino device to get

started on this technology

costs 1-5€, the software is

free. Sensors are also widely

available at low cost.

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

26

ARDUINO FAMILLY (in fact it is bigger than that… with hundreds of platforms)

Arduino

Author – Paul Pinault / Disk91.com

RaspberryPi Pico

Dual Core ARM M0+

FREQUENCY - 133MHz
RAM - 264KB
FLASH - 2MB
PRICE - 4$

ESP32 WiFi/BLE

FREQUENCY - 160MHz
RAM - 512KB
FLASH - 2-4MB
PRICE - $3-$4

ARDUINO ZERO

ARM SAMD21 M0

FREQUENCY - 48MHz
RAM - 32KB
FLASH - 256KB
PRICE - $8-$15

ORIGINAL ARDUINO

ATMEL AT328P

FREQUENCY - 20MHz
RAM - 2KB
FLASH - 32KB
PRICE - $2

27

THE ARDUINO
UNO BOARD

Author – Paul Pinault / Disk91.com

Here is a sparkfun
board, this one is a
clone of the ARDUINO
UNO.

Form factor has been
standardized to host
HATs on top of it.

The MCU is a SMD
version of the AT328P

USB provides
power and

allow to
upload code

into the MCU

RESET

GPIO

SERIAL
PORT

ATMEGA
328P

ANALOG TO DIGITAL
CONVERTERS (ADC)

5V DC

GND

LEDs
BUILTIN
TX
RX

POWER
REGULATION

From optional
external

supply

SERIAL TO USB
INTERFACE
Copy serial port
on USB

28

INSIDE THE ARDUINO MCU (AT328P)
AT328P ARCHTECTURE

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

FLASH and SRAM are separated

and connected to the CPU core,

typical of a HARVARD

architecture.

Many I/O subsystems (USART,

TWI, SPI, ADC, GPIO)

Power management for low

power mode.

Internal clock generation

We have a typical MCU, you

have no other components to

add on the board to make a

working system.

29

ARDUINO
HELLO WORLD

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

30

Hello World
ARDUINO BASICS

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

ARDUINO have a hidden main

like this:

main() {

setup();

while (1) loop();

}

You need to setup the

hardware configuration in the

setup() function.

Then you can loop forever to

the function you want to

realize.

Resistor to limit
currant over the

LED

The system executes forever

this loop – there is no reason

an embedded system exits.

Process : light on / 1s / light off

/ 1s

One Time operation,

executed on power-on /

reset.

We setup the GPIO as Output

to deliver energy over it.

31

Debugging
ARDUINO BASICS

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

One of the ways to debug, but

also used for communicating

with computer or an external

device is to use the serial port.

A Serial port is like an USB

communication transferring

data over a serial line (we will

detail later). It can pass

through USB but can also be

used as direct link between

two devices.

The Serial monitor displays

what has been printed over the

serial line. It can be string but

also variables.

Enable the console

Print something you want to

trace

Init the console display with a

given speed (9600 bit/s)

Display results

32

How works GPIOs ?
General Purpose
Input & Output

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

33

GPIO different usages
Different type of I/O

Author – Paul Pinault / Disk91.com

ANALOG INPUT

The GPIO voltage is read and
converted into a decimal
value.

It can be used to measure the
environmental Temperature.

ANALOG OUTPUT

The GPIO voltage is set to a
given value between GND and
VCC.

It can be used to modulate the
light of a LED.

DIGITAL INPUT

The GPIO reads voltage GND or
VDD to determiner a 0 or 1
value.

It can be used to get the status
of a switch button.

DIGITAL OUTPUT

The GPIO take a value 0 or 1
corresponding to GND or VDD.

It can be used to switch a LED ON or
OFF as in this example.

34

DIGITAL
SIGNAL

Author – Paul Pinault / Disk91.com

A digital signal is a 0 or
1 value. Usually, 0Volt
or VDD.

VDD can have different
Voltage : 3,3V most
common, 5V like with
AT328P (TTL)

In TTL, the 1 value
starts over 2Volts when
read.

35

DIGITAL OUTPUT
DIGITAL SIGNAL

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

A GPIO can deliver a certain

current as a maximum. This is

specified in the micro-

controller Datasheet.

This is protecting the micro-

controlleur from over-heating.

It is like if the GPIO has a

protection resistor in series. A

usual value is 100 Ohm.

For 5V, it means I = U / R = 5 /

100 = 50mA.

Configure GPIO as a digital

output:

pinMode(pin,OUTPUT);

Write a value:

digitalWrite(pin,HIGH/LOW);

Without a resistor, there is no
current limitation over a LED. This
one can burn dur to overheat
consequence of over-currant.

Even without resistor, the currant is

limited by the capacity of a GPIO to

deliver current.

36

DIGITAL OUTPUT
DIGITAL SIGNAL

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

We use resistors to limit the

current inside the circuit.

The resulting maximum current

is I = U/R

A digital signal 1 does not

mean ACTIVE. In many cases

we use ACTLIVE LOW logic

when 0 means ACTIVE.

A non connected pin value is 1,

the active ACTIVE LOW logic

ensures the signal will not be

active when the pad is left

unconnected.

ACTIVE LOW pads are indicated

with a # or _____ notation

Resistor can be after the LED

Resistor
Higher is the value, smaller

in the tunnel

-
- -

- --- - -
- ---

- -
- --- - - - - - - - - -- --- -

-
--

- -
-

--- --- -
-

--
- -

-
--

Resistor can be before the LED

The led can be
ACTIVE LOW
GPIO value 0, switch
the LED ON

The led
can ACTIVE

HIGH
GPIO value

1, switch
the LED

ON

37

DIGITAL OUTPUT
DIGITAL SIGNAL

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

When we need more power

than the GPIO can deliver, like

for powering a motor we use a

transistor as a switch to close a

circuit with higher currant.

Make sure you will limit the

currant through this circuit and

make sure the source (here the

Arduino board) is able to

deliver the currant.

--

-

-

We use a transistor as a switch by
saturating the Base.
This allows to have a larger current
between Collector and Emitter than we
can have from a GPIO

Base

Emitter

Collector

38

DIGITAL INPUT
DIGITAL SIGNAL

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

A GPIO configured as an input

will detect a LOW (0) value as

soon as the input Voltage is 0.3

x VDD so 1.5V for 5V VDD.

A left unconnected pad will be

HIGH (1).

When using a switch, we need

a pull-up or pull-down to close

the circuit. (it can be internal)

Configuring the pin:

pinMode(pin, INPUT);
pinMode(pin, INPUT_PULLUP);

Read a value:

x = digitalRead(pin);

A Pull-UP resistor ensure:
- A defined (1) value when the

button is not pressed
- Not to have a shortcut when

the button is pressed.

We could have a Pull-Down and
ACTIVE HIGH with another

configuration

Button PRESSED

equivalent circuit

(value 0)

Button RELEASED

equivalent circuit

(value 01)

39

ANALOG
SIGNAL

Author – Paul Pinault / Disk91.com

An analog signal is a
value between 0V and
VDD. Any value.

It can be continuous
like a temperature
sensor.

It can be stepped when
generated or captured
by a digital system.

ANALOG
Signal as it is in
the reality

ANALOG
Signal as it is
seen by a digital
system

Sampling

Bits

Sampling

Period

40

ANALOG OUTPUT
ANOLOG SIGNAL

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

A DAC – Digital to Analog

Converter can transform a

decimal value into an analog

value on a pin. But such a

component is expensive.

Most of the MCU use PWM –

Pulse Width Modulation - to

simulate Analog output. But it

is not, is is just averaging.

Configure GPIO as a digital

output:

pinMode(pin,OUTPUT);

Write a value:

analogWrite(pin,0..255);

PWM – with VDD = 5V

Average – 1V

Average – 2V

Average – 4V

Average – 5V

You can set values from 0
to 255 and so you have
19mV steps.
Frequency is about 500Hz

The PWM signal generation is hardware generated. It takes no CPU
time to manage this signal.

Only pins with ~ can be used as

PWM / analog output

41

ANALOG INPUT
ANOLOG SIGNAL

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

An ADC – Analog to Digital

Converter can transform an

analog signal from a pin into a

digital value. Such component

is part of most of the MCU.

No need to configure dedicated

GPIO as analog input. It is

default setting for the specific

pin A0,A1,A2…

Read a value:

x = analogRead(pin);
The value returned in not in V
or mV. Conversion is needed.

Set Resolution:

analogReadResolution(bits)

Set Reference

analogReference(ref)

Conversion resolution in

bits. Default is 10bits,

can be 8, 12, 16

depending on hardware.

The resolution corresponds
to the number of different

values you can have
between 0V and the

reference

Sampling Rate : number of

conversions per seconds.

There is a minimum period for
executing the conversion, this
period depends on resolution.

Reference Voltage – maximum voltage,

represented by the highest possible value

A reference can be VDD, but the precision is not
good, so precise voltage reference can be use like
1.1V or 2.56V … always under VDD

Arduino UNO Resolutions:

10 bits @ 79KSpS
Arduino UNO References:

DEFAULT – VDD (5V)
INTERNAL1V1 – 1.1V
INTERNAL2V56 – 2.56V
EXTERNAL – AREF 0..5V

Sampling

precision

depends on

resolution

Conversion

(5000 / 1024) mV = 4.88mV / unit
(1100 / 1024) mV = 1.07mV / unit

(2560 / 1024) mV = 2.5mV / unit

42

GPIO
ARCHITECTURE

Author – Paul Pinault / Disk91.com

A GPIO is controlled by
different signals to
configure its expected
behavior.
PUD,RRx,RPx,WPx,WRx,SLEEP,W
Dx,RDx…

These signals come from

some special registers you

can control from the

software. This is basically

what functions like

pinMode() do.

43

How to manage
asynchronous events
?

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

44

HOW TO TAKE A
SUCH PICTURE ?

Author – Paul Pinault / Disk91.com

You can’t predict
asynchronous events; you
can’t react, in the right time,
on short events.

Continuously scanning while
waiting for an event is very
energy and CPU
consuming… wasting.

A mechanism called
Interrupt is solving this
issue.

45

Interrupts explained with a hot chocolate & Nutella toast
Interrupt principle

Author – Paul Pinault / Disk91.com

Sequential
approach

Polling
approach

Interrupt
approach

You get, at least ,more toast …

Chocolate could be too warm…

46

Interrupt
handlers

Author – Paul Pinault / Disk91.com

An interrupt handler is
a short piece of code to
be executed on every
interrupt to process it.

The main task does not
know it has been
stopped during the
interrupt handler
execution.

Setup Interrupt

Do something different

Handle interrupt

Continue doing something
different

Interrupt
The main task is

not aware about

the Interrupt

handling.

We have a kind of
parallel execution of
different tasks, one

foreground, and the
others background

Interrupt
Handle interrupt

Continue doing something
different

47

Zoom on
Interrupt
handlers

Author – Paul Pinault / Disk91.com

To transparently
switching from a
program to an interrupt
handler, at any time,
the interrupt
mechanism needs to
save the previous
context and restore it at
end.

Do something different

Interrupt program

Continue doing
something different

Interrupt

Time to Take interruption
into account

Usually, the time to terminate the
current instruction + time to find the

interrupt handler

Save the previous context
and jump to the interrupt

handler

Restore the previous
context and return to the

previous program

During a short period of
time no other interrupt can

be executed to ensure the
main program progress (1

instruction)

Save anything the interrupt is

going to modify

Restore anything the interrupt

has modified

48

Interrupt

Interrupt
priority

Author – Paul Pinault / Disk91.com

There are different
types of interrupts.

All of them can be
activated in parallel and
conduct the execution
of a handler when fired.

There are priorities to
ensure the most
important are not
interrupted.

Setup Interrupt 1

Do something different

Handle interrupt 1

Continue doing something

different

Interrupt

Handle interrupt

Continue doing something

different

Setup Interrupt 2

Handle interrupt 2
Interrupt

Continue doing something

different

Handle interrupt 2

Interrupt

Red interrupt priority is higher than Green one

If Green has been in execution when Red has been
fired. Green would have been stopped to execute Red
one.

49

Interrupt
Sources

Author – Paul Pinault / Disk91.com

There are different
types of interrupts.

They are corresponding
to different peripherals
able to process
background operations
and are raised when
terminated.

Different classical interruptions a MCU is handling

• A pin of the MCU has its state changed

• A character has been received on the serial port

• A character has been sent on the serial port

• A given duration has been expired

• A given number of events has been seen

• A watchdog event occurred

• An ADC conversion is terminated

• Analog comparison event

• …

Interrupt Registers are allowing to manage interrupts

• Interrupt Mask Register is masking (disabling) interrupts one by
one.

• Global Interrupt flag is masking all interrupts in a single change.
This is needed for critical sections.

• Interrupt Flag register is indicating the status of each of the
interrupt.

50

Interrupt Vector
Interrupt principle

Illustration of a Table of handler address

IRQ IRQ VECTOR
MEMORY
ADDRESS

Address of the
IRQ Handler

RESET 0x0000 0x2000

INT0 0x0002 0x2450

INT1 0x0004 0x2600

TIMER1 0x0006 0x2120

USARTRX 0x0008 0x2071

Illustration of a Table of IRQ Handler

IRQ IRQ VECTOR
MEMORY
ADDRESS

Address of the
IRQ Handler

RESET 0x0000 JMP 0x2000

INT0 0x0008 RET

INT1 0x0010 INC @0x150
RET

TIMER1 0x0018 JMP 0x2120

USARTRX 0x0020 RET

ATMEGA328P, is using a Table of IRQ Handler with
2 byte per handler so usually you have a JMP to a
real IRQ handler or a RET.

51

ARDUINO GPIO INTERRUPTION
INTERRUPTS IN PRACTICE

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

Arduino has 2 different GPIOs

Interruptions:
• 2 external line interrupts

connected to PIN 2 & 3 named
INT0 & INT1.

• 1 GPIO changed interrupt
concerning any of the pins.

Declare External line interrupt

with Arduino

attachInterrupt(n, handler,
event)
Setup a handler function to an

external line interrupt for a

given event LOW, CHANGE,

RISING, FALLING

or
ISR(EXT_INT_0/1_vect) {…}
Interrupt handler function, what to
do when the interrupt is fired. No
parameter, no return value.

Rising edge

Falling edge

State Changed

State Low

Different events can cause an interrupt.

Interrupt setup will define what type of event will fire
the interrupt.

Edge events are 1 shot interrupt

State low events will be raised until the state

becomes high, interrupt handler can be called

multiple times.

52

Application
External interrupt

Author – Paul Pinault / Disk91.com

Interrupt Handler
What to do when the interrupt
has been fired

Interrupt
Setup

Main Program
There is nothing related to
the interrupt

The EXT interrupt can be used to detect a switch
status or change immediately and take an action in
parallel of other foreground actions, like here, a led
blinking.

53

Critical sections
INTERRUPTS IN PRACTICE

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

A critical section is a piece of

code you do not want to be

interrupted. There are multiple

reasons:

- Modify a variable shared

between different process

or with an interrupt

handler.

- Critical code like emergency

stop

- Time critical communication

with

cli()
disable interrupts

sei()
Enable interrupts

Do something

cli();

Do something critical

sei();

Handle interrupt 1
Interrupt

Interrupt

Interrupt

Handle interrupt 1

Handle interrupt 2

Do something

54

How to correctly
manage time in a
computer system ?

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

55

ARDUINO TIME
SOURCE

Author – Paul Pinault / Disk91.com

The source of time can be an
internal oscillator or and
external Crystal source with
different precision level.
- Internal Oscillator

precision about 10kppm
– 1%

- External Crystal Oscillator
10-50ppm

These clock source
precisions are limited, but
good enough for most of the
applications

56

Manage time with instructions
Time management

Author – Paul Pinault / Disk91.com

for (int i = 0 ; i < 250 ; i++);

cycle
LDI R18,250 1

Loop:
DEC R18 1
NOP 1
BRNE Loop 2

Total loop cycles = 250x4 cycles
Each cycle is 1/16MHz = 62.5ns
Total loop time = 62.500 uS

C
No duration
details

ASM
Duration
can be
precisely
determined.
Waste CPU
time spent
to wait.

Real
duration is
determined
by clock
precision
and
potential
interruption

57

WHAT IS A
COUNTER ?

Author – Paul Pinault / Disk91.com

A counter is a
peripheral, available in
any CPU/MCU, able to
count events
asynchronously.

It counts events
without taking CPU
time (in background)
and wake up the CPU
when it has been
programmed for.

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Counter Size

Can be 8/16… bits

Initial value
It determines the

number of events to
count Event

Like an external signal

Increments counter
Every event increments

the counter

…

Max value
When reaching the

max value, a trigger is
set (flags / interrupt)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Or reload initial value
Depends on counter mode

Overflow
Depends on counter mode

1Counter
Flag

Interrupt
Counter

Interrupt

58

WHAT IS A
COUNTER ?

Author – Paul Pinault / Disk91.com

The CPU is configuring the

COUNTER writing

configuration in counter’s

register.

Then the CPU will do

something different, until it

gets triggered by the

counter’s interrupt.

At any time, the CPU can

read registers and counters

so monitor the progress, for

non interrupted usage, or

basic counting purpose.

CPU

COUNTER

Counter Register

Initial Value

Config Register

Status Flag

Setup the
counter in the
expected
mode, writing
the register

Event sources

CPU can read
values and

status

Interrupts

59

TIMERS ARE COUNTERS CONNECTED
ON CLOCK EVENT

COUNTERS

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

A Timer is a counter. What’s

make a time is the source of

the events.

Timer are connected to a clock

and therefore, will be

incremented on regular basis.

Timers are counting time in

background and are not

impacted by workload,

interruptions …

By the fact they are counters,

they are setup for a given time

and will generate an interrupt

once that time has been

reached.

You can also use them to

measure time between events.

COUNTER

Counter Register

Initial Value

Config Register

Status Flag

SYSTEM CLOCK
16MHz

CLOCK DIVIDER

2M
Hz

25
0K

Hz

62
.5
KH

z

15
.6
2K

Hz
8bits mode

0.5us – 16ms

16bits mode
0.5us – 4.19s

If you need to
measure a longueur
period, you need to

use the CPU to count
the counter’s

overflows

60

Different usages
TIMERS

Author – Paul Pinault / Disk91.com

Generate waveform

Timer can automatically and
regularly toggle a MCU pin.
This can be used to generate
a PWM signal and simulate
analog output as previously
seen. Function
analogWrite(…) is using it.

Being waked-up on

regular basis.

The timer can be program to
generate an interrupt on
regular basis. This is the
starting point of any multi-
tasked operating system.

Measure time

You can start a timer at the
beginning of an event and stop
it at the end of it to measure
the event duration precisely.
The function millis() and
micros() can be used for a such
purpose.

Wait for a certain time

The delay() function is using a timer
to get a precise pause duration.
Running in background it is also a
way to count time elapsed in a
system, maintain a clock…

61

AT328P
TIMERS

Author – Paul Pinault / Disk91.com

AT328p have
- 2x 8 bits Timers

- Timer0 for delay(), millis()
- Timer2 used by tone()

- 1x 16 bits Timer
- Timer1 used by servo()

- Timer 2 can be used for our
own purpose if no need of
tone() – sound generation Timer configuration

Including the pre-scaler setting

Timer counter
Current value of the

counter

Overflow
Go to TIFR Interrupt
signal

Time source
From prescaler

62

100ms periodic background action
Timer Application

Author – Paul Pinault / Disk91.com

Let’s consider CLK / 1024 timer clock source:
- 1 step is 64uS
- 100 ms = 1562.5 steps – higher than 255 – it is

impossible to count 100ms with this timer.

- 10 ms = 156.25 steps – we can count 10
expirations of 10ms to get 100ms.

Let’s make it simple assuming 10ms = 156 steps
The counter overflow at 255 so we need to
initialize the counter with value:

Cnt init = max Value – desired steps
Cnt init = 256 – 156 = 100

Interrupt Handler
What to do on every 10ms

Timer & Interrupt Setup

Main Program
There is nothing related to the timer to
do

63

Measure a time duration
Timer Application

Let’s consider CLK / 32 timer clock source:
- 1 step is 2us
- every 50 steps we have 100us

We can count the 100us steps to measure a
duration of something.

The precision can be adjusted by the clock division. We
select the right one depending on what we want to
measure.

It is important to not have too much interrupt call to
not impact the measure when it concerns internal
processing.

To measure external processing (like a round trip delay
of an ultrasound sensor) there is no big impact.

Author – Paul Pinault / Disk91.com

Stop Timer
When we have
finished to count
time

Interrupt
Handler
What to do on every
100uS

Timer &
Interrupt
Setup
For every time we
want to measure a
duration

Usage
Timer counts time in
background

64

Communication bus,
multiple ways to
interact between
systems / with sensors

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

65

Communication bus

Author – Paul Pinault / Disk91.com

Communication is a critical
point and balanced different
objectives:
- Simplicity & price
- Speed
- Latency
- Reliability
- Distance
- Universality

Hardware development is
optimized for every use-
case. Every sensor supports
the most efficient
communication bus. MCU
must support different one.

66

Different usages
COMMUNICATION BUS

Author – Paul Pinault / Disk91.com

IoT oriented

communications bus

System to system
communications can rely on
“network” oriented
communication bus built for
embedded solutions:
- Bluetooth
- Sigfox / LoRa
- Local radio …

Sensor optimized

communication bus

More efficient communication
bus have been deployed to
communicate with sensors:
- SPI
- I2C
- One Wire

Universal, old school,

communication bus

Most of the systems
implements low-speed, old
communication systems. They
are serial communications:
- UART / USART
- USB USART emulation
- IR

High speed bus, for high end

communications

Desktop & server uses complex and
high-speed communication buses.
They are costly solution in regards of
embedded systems like Arduino. We
have:
- SATA, firewire
- Ethernet, WiFi
- PCIe …
- 4G/5G

67

Different parameters
COMMUNICATION BUS

Author – Paul Pinault / Disk91.com

Long vs Short range

Communicating at 5 cm is
different than communicating
over long distance. The
electrical consideration are
different, the noise tolerance
is also totally different.

Synchronous vs Async

System can have a common
clock for transmission, shared
over a wire. This
synchronization allows high
speed communication.
Otherwise, the systems need to
negotiate a baudrate and
oversample to get in sync. The
transmission rate is lower.

Half vs Full Duplex

Half duplex system is not able to
talk and listen at the same time.
Full duplex systems can do it.
Full duplex requires 1 wire for Tx
and 1 wire for Rx. Even with 2
wires some systems do not have
the ability to Rx and Tx in terms
of computing power (less and
less now days)

Serial vs Parallel

Data can be transmitted one bit after
the other (serial communications) or
by word (parallel communications).
Serial allows to have less wires and
make design simpler.
Parallel is used for high-speed
memory interface.
Serial is used for interfaces like UART,
SATA, USB, ETHERNET… most of the
communication are serial based now
days.

0 1 0 0 1

1

0

0

1

0

0

0

1 01001 01001

xM

68

UART

Author – Paul Pinault / Disk91.com

Characteristics

- Serial communication

- Asynchronous

- Usual speed 9600-115200

bps

- Half and Full duplex

- Short Range (TTL)

- Long Range (RS232)

Rx and TX are seen from the

MCU point of view.

2 wires RX-TX + GND. You can

also have flow control signals

RTS-CTS…

Read message (and loop)
When some

Setup
Syncing on baudrate

Send message
On regular basis

69

SPI

Author – Paul Pinault / Disk91.com

Characteristics

- Serial communication

- Synchronous

- Up to 60Mbits

- Full duplex

- Short Range

4 wires including CLK + GND

Master with multiple slaves.

Applications like SDCARDS,

Flash memory, ADC, Camera

lens… Write to device
COMMAND + VALUE

Setup
SPI + Chip Select pin

Select Slave
On regular basis

Unselect Slave
On regular basis

70

I2C

Author – Paul Pinault / Disk91.com

Characteristics

- Serial communication

- Synchronous

- 100Kbps to 5Mbps

- Half duplex

- Short Range

2 wires (SDA/SCL) + GND

Master with multiple slaves.

Each of the slaves have a hard

coded 7 bits address for chip

selection.

Applications like sensors

(temperature, accelerometers,

…)

Write to device
Device address + R/W
Register address
Value to write

Setup
Uses specific pins

71

The STACK, or the way
to manage calls and
local variables at run.

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

72

SOME PROBLEMS TO SOLVE
COMPUTER STACK

Author – Paul Pinault / Disk91.com

Manage local context

variable (inside a

function) dynamically.

Local variable are allocated on
every function call, they can’t
be placed in the memory in a
predefined zone but need to be
dynamically allocated. How to
manage this in a static
allocation context ? Stack !

Being able to return at

the right place at the

end of a function

execution

Did you even think about how
the processor knows where to
return at the end of a function
call ? How to manage the
return history in recursive
executions ? Stack Is here too.

Save context when

executing an

interruption

We have seen the need to save
the current execution context
before jumping to an interrupt
processing. For this we also
need a memory zone. The stack
in involved here also.

Temporarily save data to

face the limited number of

register

Due to the reduce number of
register available for local
computation, the compiler needs
some extra memory to temporarily
save data. It needs a zone of
memory for this the stack memory
is used.

73

STACK
PRINCIPLE

Author – Paul Pinault / Disk91.com

STACK is a memory zone

where the CPU / Compiler can

stock temporary data.

Like the plate stack on the

right, you add data on top of

the memory area, and you

remove data from the top of

the memory only.

That way, there is no

fragmentation in the memory.

Accessing the
middle of the
stack is a
problem…

You always add /
remove on top of
the stack

74

STACK
PRINCIPLE

Author – Paul Pinault / Disk91.com

Two simple operations

- PUSH (add a data on top of

the stack)

- POP (remove a data from

top of the stack)

ADD A NEW
DATA ON TOP
OF THE STACK

REMOVE A DATA
FROM THE TOP OF
THE STACK

PUSH POP

75

STACK
PRINCIPLE

Author – Paul Pinault / Disk91.com

But the stack is not a stack of

plate but a memory array.

- Adding a value on top of

stack increment the stack

pointer.

- Reaching the end of the

stack will be a killer…

- Removing a value just

move the stack pointer a

step behind

- Stack is empty when Stack

Pointer is Stack base

A5 B4 34 67 54 78 54 78

56 76 98 86 98 76 90 55

76 XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

Stack

Base

Stack

Pointer

Stack

Limit

A5 B4 34 67 54 78 54 78

98 86 98 76 90 55

76 82 XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

Stack

Pointer

PUSH

A5 B4 34 67 54 78 54 78

56 76 98 86 98 76 90 55

76 82 XX XX XX XX XX XX

XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

Stack

Pointer

POP

76

STACK IN
FUNCTION
EXECUTION

Author – Paul Pinault / Disk91.com

Stack can be use for different

purpose:

- Store local variables

- Store call history

- Pass function parameters

- Pass function results

- Practically, for a faster

execution, compile use a

mix of register and stack

for passing parameter and

results.

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

int f1(int v) {
if (v == 0) return 0;
return f1(v-1)+v;

}

main() {
int a = 2;
b = f1(a);

}

77

STACK IN
FUNCTION
EXECUTION

Author – Paul Pinault / Disk91.com

Here we have the call of the

function f1, passing an

argument (02) over the stack.

The result will be also in the

stack to 1 place is reserved for

it.

Then by calling the function,

the address to return is

pushed to the stack.

02 XX @ XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

int f1(int v) {
if (v == 0) return 0;
return f1(v-1)+v;

}

main() {
int a = 2;
b = f1(a);

}

78

STACK IN
FUNCTION
EXECUTION

Author – Paul Pinault / Disk91.com

Now f1 is calling itself with a

new value 1.

By adding the same pattern on

top of the stack we see how

calls after calls the stack is

filled with local function

context.

The function could also have

local variables included in its

local context inside the stack.

02 XX @ 01 XX @ XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

int f1(int v) {
if (v == 0) return 0;
return f1(v-1)+v;

}

main() {
int a = 2;
b = f1(a);

}

79

STACK IN
FUNCTION
EXECUTION

Author – Paul Pinault / Disk91.com

Here is the last call with the

value 0 before starting to

unstack the different calls. 02 XX @ 01 XX @ 00 XX

@ XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

int f1(int v) {
if (v == 0) return 0;
return f1(v-1)+v;

}

main() {
int a = 2;
b = f1(a);

}

80

STACK IN
FUNCTION
EXECUTION

Author – Paul Pinault / Disk91.com

Now the f1(0) is ready to

returned. The result value (0)

is written in the Stack.

No need to be on top to be

modified in fact, the function

can access any of the value in

its local stack context.

The saved @ allows to know

where the program should

jump back.

02 XX @ 01 XX @ 00 00
@ XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

int f1(int v) {
if (v == 0) return 0;
return f1(v-1)+v;

}

main() {
int a = 2;
b = f1(a);

}

81

STACK IN
FUNCTION
EXECUTION

Author – Paul Pinault / Disk91.com

Function f1(1) local stack

context is restored. The stack

pointer is back on it.

The stack content f1(0) is not

cleared. But it will be override

by a future other local context.

The function can now

compute the new local result

and store it in the stack to

pass it to f1(2)

02 XX @ 01 01 @ 00 00
@ XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

int f1(int v) {
if (v == 0) return 0;
return f1(v-1)+v;

}

main() {
int a = 2;
b = f1(a);

}

82

STACK IN
FUNCTION
EXECUTION

Author – Paul Pinault / Disk91.com

The same thing append for

f1(2)
02 03 @ 01 01 @ 00 00
@ XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

int f1(int v) {
if (v == 0) return 0;
return f1(v-1)+v;

}

main() {
int a = 2;
b = f1(a);

}

83

STACK IN
FUNCTION
EXECUTION

Author – Paul Pinault / Disk91.com

And finally, the Stack pointer

is back to its initial state and

the resulting value 03 can be

retrieved.

The stack is ready for a new

function call sequence …

There is no memory

fragmentation, local memory

is dynamically allocated in

stack and also globally free

when terminating the

function.

02 03 @ 01 01 @ 00 00
@ XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX

int f1(int v) {
if (v == 0) return 0;
return f1(v-1)+v;

}

main() {
int a = 2;
b = f1(a);

}

84

Modern
systems
architectures

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

85

ARDUINO TIME
SOURCE

Author – Paul Pinault / Disk91.com

The modern CPU
architecture is integrating
many features in the internal
design to improve the
performance:
• Pipeline
• Superscalar architecture
• Hyper - Threading
• Caches
• Multi-core
• Coprocessors
• Memory Management

Unit
• Virtualization
• …

86

PIPELINES
Modern processor architecture

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

Each of the processor

instructions are split in

different steps (as an example):

- Loading incoming data

- Proceed to operation

- Store the result

Each of these steps could take

one clock cycle as this is the

minimal period of time the CPU

can manage.

With the use of a pipeline, it is

possible to run in parallel

different instruction across

these steps.

The pipeline throughput is 1

instruction per cycle.

This is particularly used with

CISC CPU.

SPEED = 1 Instruction / cycle

87

SUPERSCALAR ARCHITECTURE
Modern processor architecture

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

We have, inside a single core,

multiple execution units.

They are processing in parallel

multiple instructions of a same

program.

Basically, taking instruction 2

by two instead of one by one.

We have two pipelines.

This, in theory allows to get

multiple instruction to be

delivered on every clock cycle.

SPEED = 2 Instructions / cycle

88

But Pipeline
is not perfect

Author – Paul Pinault / Disk91.com

Instruction can be in
conflict and prohibit the
parallel execution
inside the pipeline.

In a such case a NOP is
inserted.

Compilers have special
algorithm for managing
this. Some CPU
dynamically reorder
code to manage this.

THE SAME THING HAPPEN WITH JUMPS
Modern CPU have predictive jumps.

WE CAN’T LOAD “A”
UNTIL THE “INC” RESULT
HAS BEEN SAVED

A “NOP” is inserted a
cycle has been lost

SPEED = 0.X to 1.X Instructions / cycle

89

Hyper - Threading
Modern processor architecture

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

As we are inserting many NOPs

on the instruction flow to

manage the memory and

register access conflicts + not

correctly predicted jumps, the

idea is to replace these NOPs

by instruction to execute.

To be sure these instructions

won’t be in conflicts with the

other one, they come from a

different process or thread.

Therefore, it is hyper-

threading. This is seen as a

different processor even if it is

composed of a single ALU.

This is corresponding to the

Thread factor when you have a

CPU with 2 cores / 4 threads.
SPEED = 1.1 – 2 Instructions / cycle

90

Memory Caching
Modern processor architecture

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

Memory is slow compared to

processor computing capability.

Producer :

DDR4-3200 ~ 25GB/s

Consumer :

CPU = 32 core / 64 threads @

3.2 Ghz ~ 204 GB/s

To avoid slowing down the

processor computation power

by 8, we use caches to store

locally a data accessible in a

faster way.

As a consequence, we can have

cache miss and cache conflicts

to manage.

Program can be optimized

related to cache size.SPEED = 1.1 – 2 Instructions / cycle

91

Multi code processor
Modern processor architecture

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

A processor is a big chip with a

lots of pins. It is hard to get

more than 4 on a single

motherboard or 16 in a single

servers.

In a way to be more efficient,

we put altogether multiple

CORE (processor) in a single

Socket (chip). That way we can

have 32 / 64 / … in a single

socket and have 4, 8… sockets

in a server for a total of:

64 x 8 = 256 core / 512 Thread

in a server… (or more depends

on hardware and technology)

SPEED = 64 – 128 Instructions / cycle

92

Co-Processor

Author – Paul Pinault / Disk91.com

Hardware dedicated to
some specific function
like 3D rendering and
calculation, encryption,
IA … allows to improve
the performance by
hardcoding some
complex instructions in
hardware.

93

Memory Management Unit (MMU)
Co-processor

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

The MMU manage the

addressable memory for the

MCU. Is reduce the operating

system activity to manage the

process memory mapping into

the physical memory.

Each of the process will thing to

be alone in memory and have

access to the whole available

and continuous memory.

The MMU also manage the

access right on memory to

ensure a process or a specific

zone is not accessed by a

wrong process.

94

Virtualization
Co-processor

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

An instruction is executed on a

certain Ring level.

RING0 have access on

hardware and can control what

is executed on Ring 1 to 3.

Application are running on

RING3 and can’t control lower

ring and hardware.

Operating systems run on ring

0, Application on Ring 3.

WHAT IS HAPPENING
WITH A HYPERVISOR
RUNNING IN SUCH
SITUATION

CLASSICAL EXECUTION OF AN
OPERATING SYSTEM /
APPLICATION ON A CPU

95

Virtualization
Co-processor

A
u

th
o

r
–

P
a

u
l

P
in

a
u

lt
 /

 D
is

k
9

1
.c

o
m

The operating system is not

RING-0 and needs to manage

this situation, it needs to be

compiled especially for it.

Virtualization CPU extension

allows to process it with a

better efficiency.

A new RING -1 run the

Hypervisor so the Operating

system can run on RING 0.

For the operating system it is

exactly as if it is running bare-

metal.

The RING -1 also have some

specific instructions to optimize

the virtualization performance.

WHAT IS HAPPENING
WITH A HYPERVISOR
RUNNING IN SUCH
SITUATION

WITH A CPU
EXTENSION
MANAGING
VIRTUALIZATION

96

ARCHITECTURE

IS

PERFORMANCE

Author – Paul Pinault / Disk91.com

The same program
running on different
machine but taking
benefit of the
architecture evolutions

CPU / FREQ Exécution time Time for 1Mhz Architecture change
386 / 25MHz 291 s 7275s

486 / 33MHz 161 s 5313s ½ pipeline

586 / 60MHz 31 s 1860s Pipeline + superscal.

PII / 450MHz 1,68 s 756s

PIII / 800MHz 0,87 s 696s

Athlon / 1.2GHz 0,43s 516s

