RAK WisBlock – a kind of industrial Arduino

RAK is a company specialized in IoT hardware, particularly in the LoRaWan domain. They are well known for their LoRaWan concentrators working with raspberryPi.

Since a couple of month they have launched a new family of device, the Wisblock. This is a kind of Arduino solution with a MCU part (running a NRF chip with a LoRa transceiver) and different sensors you can connect to it to make an IoT device. That’s a really simplified way to see the solution as in fact the architecture is really different.

At first, the solution is based on a motherboard where you can plug different type of modules. You can have multiple additional sensors both side of the motherboard. We are also going to see that the way all of this is connected is industrial and can be use for prototypes, medium scale field deployment and finished product. That’s the main difference with a classical Arduino board.

The unit price of a solution with a GPS, MCU, Accelerometer is about $50, nothing really expensive for prototyping, a bit too high for a field experimentation, really high for an end product but apparently you can negotiate that price when you have a certain volume.

Continue reading

IoT Antenna matching with Atyune

Recurrent step when making an IoT device, the antenna matching is a key activity to get the right radio performance for your device. You radio strip and antenna must be tuned to match a 50 Ohm impedance. For doing this I’m using a miniVNA Tiny Vector Network Analyzer (until a switch to my Rigol Spectrum Analyzer) as described on the previously linked post.

The impact of a correct antenna matching has been addressed in an old post on this blog also.

Currently, to tune my antennas, I’m also using the Atyune tool. This tool is free and really good to make the tuning but also to get a better understanding of what you are doing. Let’s see how to proceed.

Continue reading

Contact less connected thermometer

I’ve recently made a post on how to make a pandemic alarming system based on low cost connected thermometers. This post was more about the organization model and business model than the technological solution and implementation. So I also wanted to continue to investigate the connected thermometer solution, mainly for the fun. As I’ve been sponsored by digitspace.com for some free hardware, it has been the opportunity for testing contact-less thermometers module.

The design I’m going to propose in this post will not apply to the low-cost connected thermometers as the technology I’m going to use is far more expensive to the one I proposed in my previous post.

That said, this design can be useful for companies, public site or free access thermometer booth anyone would like to design at low cost.

Continue reading

Measure power consumption with Otii tool

A usual question you have when designing a device is the autonomy of your battery and the power consumption of your device. By the past I’ve tried different tools for this usage. Starting with USB sticks power consumption, only working for high consuming devices. They are low precision. Going to multimeter tools with USB connectivity precise but sampling at 3-5Hz only. During a certain time I’ve plan to make a solution on my own and finally I’ve found the OTII tool from QOITECH on the recommendation of friends from Sigfox community.

Here is my experience with that tool.

Continue reading

Battery selection for IoT design

When making an IoT project the battery choice is something really important. Batteries stands for autonomy, sizing, price and usage conditions.

There is no universal solution to power your device, the right battery really depends on your requirements. To find the right powering solution you need to consider a certain number of parameters. We will try in this post to list most of them. This post is not exhaustive: I’m not a battery expert. This post is based on my own experience and you may consider it as a starting point, not a solution.

Continue reading

Battery technologies usually used for IoT compared

As it is a recurrent question to find the right battery for an IoT design, I decided to write a post about this topic. I’m not claiming to be an expert of this and I’ll not give insight on this. The purpose is to list the different technology existing with the main characteristics to be able to use the best fitting technologies quickly.

This post is presenting a table of the different battery’s technologies available with the main characteristics. These characteristics are global one regarding the technology. Each of the battery vendor can have specific specifications a bit different. You will need to take a look on datasheets details.

Continue reading

Yadom Murata CMWX1ZZABZ-091 breakout board under review

Murata CMWX1ZZABZ chip is actually famous for being a powerful LoRaWan multi zone module also able to communicate over Sigfox.

I’ve already published a technical post on Murata CMWX1ZZAB chip in a previous post. You will also find an implementation based on my IoT SDK. Yadom has just released a breakout board ( BRKABZ01) for this chip making it accessible for hackers and for easier prototyping.

This post is going to review this board and demo how to access it really quickly. Are you ready ?

Continue reading

Fongwah S9 NFC Reader

I’m actually working on a device using a NFC chip from ST. Unfortunately, this chip is not using the ISO-14443 norms but the less usual ISO-15693 one. As a consequence the NFC reader I had were not compatible with this norms. I found a solution (there are not a lot) in Amazon to covert this need. The Fongwah S9 NFC Reader. I made this post to share my test experience of this device.

Precision: this is not a post made for Fongwah, I really have to crash my head on this device and the purpose of this post is to save your time. The fondwah S9 is a nice tool with a multi-language (on top of C library) SDK but it is delivered with no easy documentations, broken links and no reference on ISO-15693 support… I was a bit disappointed once the box opened.

Continue reading